Scale-up of an RNA reference standard for high-throughput microarray QC

Paul K. Wolber, Ph.D. Project Manager 28-Mar-2003

(with thanks to a host of others at Agilent and Rosetta...)

Problem Statement

Goal & Constraints

- + Sample for final product lot QC (hybridization assay)
 - Fixed QC array design
 - Sensitivity to known & potential error modes
- + Sample must be
 - Reproducible
 - Manufacturable
 - Economical

Possibilities Considered

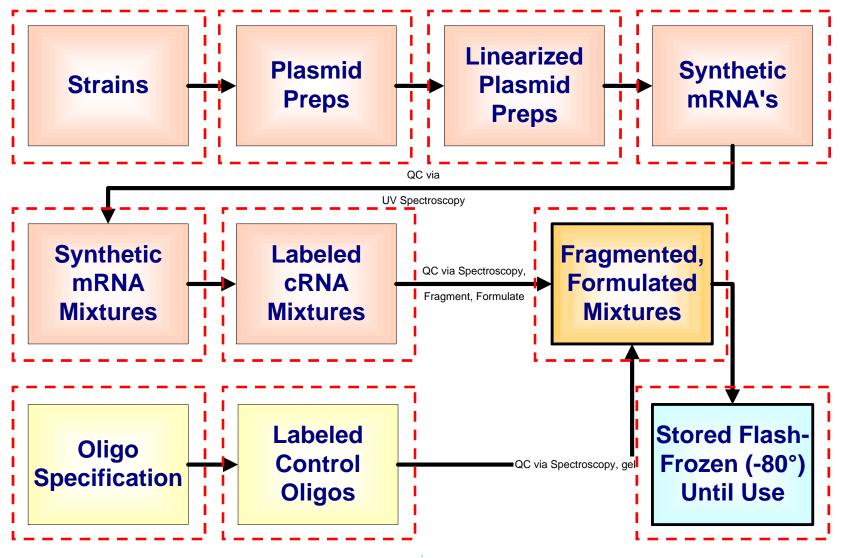
- Oligo-only sample
- Complex natural sample
- Complex synthetic sample

Possibilities Considered: Details

- Oligo-only sample
 - + Easiest to make & maintain
 - + Limited relevance to customer experience
 - Narrow dynamic range
 - No cRNA component

NIST/pKw

- Difficult to generate expression ratio data
- Need to develop a family of oligos
- ii. Need to develop QC and formulation methods to maintain ratios

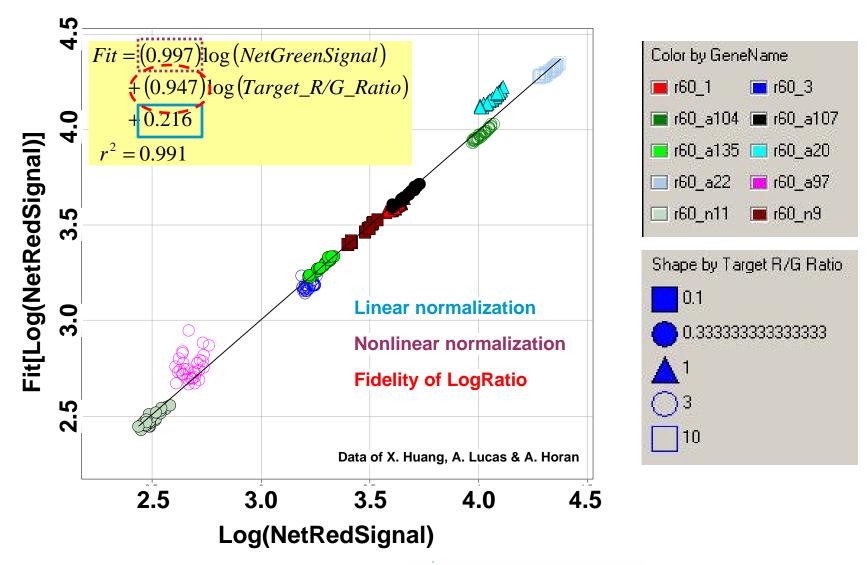

Possibilities Considered: Details

- Complex natural sample
 - + Hardest to make and maintain
 - More labor to make than to use
 - Qualifying new batches of natural mRNA difficult
 - Species-specific
 - + Most relevant to customer experience
 - Full dynamic range
 - Labeled cRNA, as used by customers
 - If 2 natural samples are used, they can be chosen to generate a rich range of differential expression (but TRUTH difficult to determine...)

Possibilities Considered: Details

- ✓ Complex synthetic sample (oligo + E1A cRNA)
 - + Intermediate difficulty of production/maintenance
 - 300x more efficient than "natural" sample
 - Stable source of (synthetic) mRNA component
 - Species-independent
 - + Intermediate relevance to customer experience
 - ~200-fold dynamic range
 - Labeled cRNA, as used by customers
 - Known ratios of E1A targets in 2 samples
 - Control relative specific activities by labeling mixture

Biomaterials Flow


Typical E1A Cocktail Compositions*

Transcript	Nominal Copies per Cell		Target Ratio
	Cocktail 11	Cocktail 12	rarget itatio
r60_a20	100	100	1:1
r60_1	10	10	1:1
r60_a22	10	100	1:10
r60_n9	100	10	10:1
r60_a104	10	30	1:3
r60_a107	30	10	3:1
r60_3	3	9	1:3
r60_a135	9	3	3:1
r60_a97	0.5	1.5	1:3
r60_n11	1.5	0.5	3:1

^{*} courtesy of Rosetta Inpharmatics

Multiple Regression Model of E1A Data

Fixed QC Array Design

Probes to oligo targets:

Probes to cRNA targets:

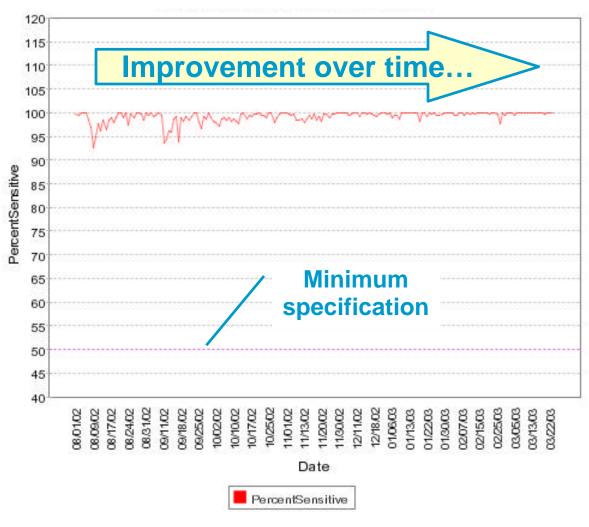
Customer-oriented, ratio-centric measurements

Measurement of known printing and synthesis error modes

Routine Quality Metrics Based on E1A Targets

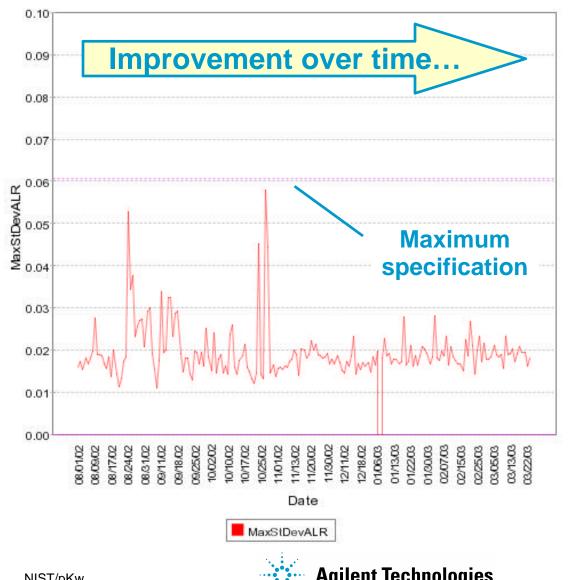
Ratio Sensitivity

+% of 1 copy/cell probes yielding ratios within 50% of expected value

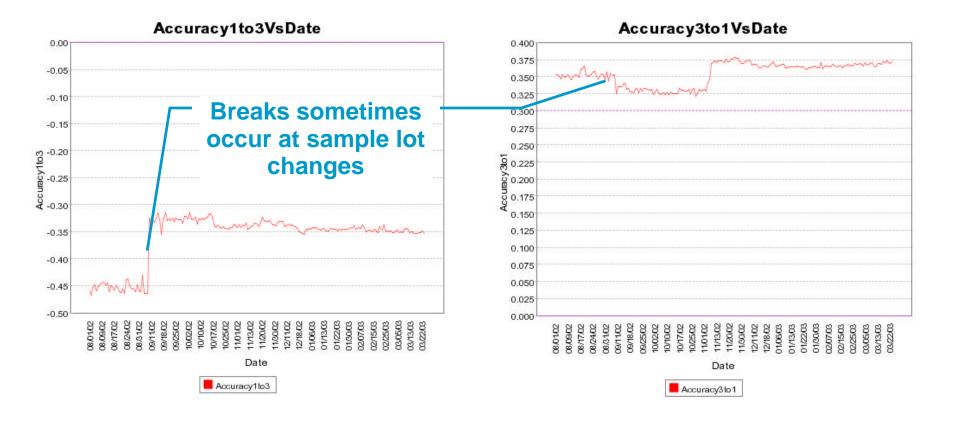

Reproducibility

- + Maximum value of S_{LogRatio} for 5 different E1A probes
- + Indicates CV of LogRatio Measurements

Accuracy


+ Average LogRatios (n=30) for 3:1 and 1:3 probes

Run Chart: Ratio Sensitivity Metric



Run Chart: Reproducibility Metric

Run Charts: Accuracy Metrics

Conclusions

- High-throughput micoarray QC presents some unique challenges
 - + Long-term stability of standard sample
 - + Cost-effectiveness of standard sample
- The Rosetta E1A spike-in system can be used to perform high-throughput microarray QC
 - + Manufacturable (>10,000 assays to date)
 - + Good compromise between simple and complex samples
 - + Ratio-centric metrics

Relevance to NIST Microarray Standards Initiative

- Synthetic mRNA samples are a viable approach to standard generation and maintenance
- Rosetta E1A standard set is particularly attractive
 - + Species-independent
 - + Proven track record

NIST/pKw

- + Easily extended (by cloning additional inserts)
- + Suitable for use in multiple systems & settings